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Heat conduction in one-dimensional chains and nonequilibrium Lyapunov spectrum
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We define and study the heat conductivitand the Lyapunov spectrum for a modified “ding-a-ling” chain
undergoing steady heat flow. Free and bound particles alternate along a chain. In the present work, we use a
linear gravitational potential to bind all the even-numbered particles to their lattice sites. The chain is bounded
by two stochastic heat reservoirs, one hot and one cold. The Fourier conductivity of the chain decreases
smoothly to a finite large-system limit. Special treatment of satellite collisions with the stochastic boundaries
is required to obtain Lyapunov spectra. The summed spectra are negative, and correspond to a relatively small
contraction in phase space, with the formation of a multifractal strange attractor. The largest of the Lyapunov
exponents for the ding-a-ling chain appears to converge to a limiting value with increasing chain length, so that
the large-system Lyapunov spectrum has a finite lip81.063-651%98)11510-6

PACS numbdrs): 05.70.Ce, 05.26:y, 31.15.Qg, 47.76:-n

[. INTRODUCTION of freedom, it has been establisHé&d, even rigoroushy10],
that the phase-space distribution function can occupy a mul-
Casati, Ford, Vivaldi, and Visscher introduced theirtifractal attractor, with an information dimension reduced
“ding-a-ling” model in 1984 [1]. This one-dimensional well below that of the unconstrained equilibrium distribu-
model is, arguably, the simplest mechanical model to exhibition. For stochastic boundarieshowever, it has been stated
Fourier heat flow, with a well-defined thermal conductivity, that the distribution is absolutely continuo[,7], without
x=—Q/(dT/dx), in the long-chain-length limif2]. Here, any fractal character. There are no numerical results confirm-
Q is the heat flux, andiT/dx is the temperature gradient ing this idea, and the present work developed, in part, to test
along the chain. In the original version of this mofiel?] all it. In a recent study of the phase space structure of a driven
even-numbered particles were bound to their lattice siteorentz gas with a partially stochastic boundary we have
with harmonic springs, while the odd-numbered particlesfound numerical evidence suggesting that multifractal attrac-
were able to move freely, between their adjacent bound pators may coexist with stochastic boundari8&$
ticles, transporting heat. The system was bounded by two The noise introduced by stochastic boundaries is a com-
stochastic heat reservoirs, which served to drive the chaiplicating feature for any comparison with deterministic ther-
into a nonequilibrium steady state. In a variant of this modelmostatted boundaries. We are particularly interested in the
introduced by Prosen and RobniB], all interior particles chaotic properties of nonequilibrium steady states. It is of
are harmonically bound to lattice sites. The first and lasinterest to determine, first of all, whether or not a Lyapunov
particles move freely, coupling the chain of colliding oscil- spectrum exists for a system with stochastic boundaries. We
lators to the terminating stochastic heat baths. have developed an approximate method for estimating such a
Recently, Hu, Li, and Zhao[4] considered one- spectrum and apply it here to a slightly modified version of
dimensional Frenkel-Kontorova chains, consisting of parthe one-dimensional ding-a-ling model. We find that the re-
ticles connected by harmonic springs and, in addition, subsulting approximate spectra resemble those from other non-
jected to an external sinusoidal potential. They showed thatquilibrium steady-state simulatiofi§,9—-14, with a nega-
this external potentialthe “lattice”) assumes the role of the tive overall sum corresponding to the collapse onto a phase-
bound lattice particles in the ding-a-ling model and that aspace strange attractor. However, the dimensionality loss is
strong phonon-lattice interaction, inducing phonon scatteringjuite small, of order M for a fixed temperature difference
on the lattice, is the key for the existence of a finite heatetween the stochastic boundaries of the chain, due to the
conductivity in the long-chain limit. Anharmonicity in the one-dimensional nature of the model.
potential is not sufficient and can lead to a diverging conduc- The convergence of the Lyapunov spectrum for increas-
tivity as exemplified by the Fermi-Pasta-Ulggnmodel[5]. ing system size in equilibrium is another interesting question.
In studies of nonequilibrium steady states it is presentlyin two dimensions this convergence turned out to be delicate,
unclear to what extent the phase-space distribution functiof6] apparently depending on the details of the boundary con-
depends on the choice of boundary conditipdis It is quite  ditions. There is numerical evidence for systems of hard
reasonable, as we detail later, to expect boundary effects, alisks in two dimension§l1], and for hard spheres in three
order N"*® in D dimensions, wherN is the number of [12], that the maximum exponent exists. Our results for the
particles. Such boundary effects can be sensitive to the dene-dimensional ding-a-ling model indicate that the largest
tails of their implementation. Usindeterministic feedbado Lyapunov exponent converges to a definite limit with in-
impose energetic or thermal constraints on boundary degreeseasing system size, as might be expected for the Einstein-
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like localized-mode nature of the motion. In contrast, the
Fermi-Pasta-UlanB model, which is characterized by a di-
verging heat conductivity, seems to exhibit a logarithmic di-
vergence of the maximum Lyapunov exponent with chain
length [16] emphasizing the nonlocal character of its dy-
namical processes.

For the ding-a-ling model there is no special reason to use
a harmonic binding potential for the particles bound to a
lattice site. Here we modify the original model of Casati
etal. by using a gravitational potential$=mgx—Xo|,
rather than a harmonic one, for the even-numbered bound
particles. Herex stands for a bound-particle coordinate, and
Xo denotes the respective lattice site. The choice (dree-
dimensional gravitational potential has the advantage that
the times at which bound-free collisions occur can be found FIG. 1. Typical space-time trajectories for a gravitational ding-
analytically, by solving quadratic equations. The simplifieda-ling model with 9 particles, where the time is plotted along the
model has the same qualitative properties as the original on@prizontal axis. The boundary temperatures are 10 at the top, and 30
but offers the advantage of superior computational effi-at the bottom, in units off* =mgyo/kg. The gravitational field
ciency. In Sec. Il we introduce our model and describe arstrength is 106,.
exact algorithm for the computation of Lyapunov spectra in
tangent space. Particular emphasis is given to the proper N p2
treatment of stochastic boundaries on both ends of the chain. H= > |=—+mglx«—ko||+{hard core,
This allows the computation of full Lyapunov spectra for =112m
chains supporting stationary heat flow described by Fourier's o ]
law (in the long-chain limit. Our simulation results, both for Where the gravitational acceleratiogy=0 for the odd-
equilibrium and stationary nonequilibrium chains, are pre-numbered free particles, and,=100g, for the even-

sented in Sec. lll. We conclude, in Sec. IV, with a few re-numbered bound particles, and p, are the spatial coordi-
marks. nate and the momentum, respectively, of particlein the

following we use reduced units for which the particle mass
m, the mean interparticle spacing and the gravitational
[l. MODIFIED DING-A-LING MODEL FOR HEAT constantg, are all unity. Our unit of time is ¢/go)* and
CONDUCTION the unit of energy isnogy. Note that the gravitational field

) . . . ils 100 in our reduced units. Since also Boltzmann’s constant
At first glance it seems odd that a one-dimensional mode[” ~. X : .
kg is taken as unity, all temperatures are measured in units of

could lead to(i) chaos,(ii) ergodicity, within the constraint T* =mgyo/ke . With a mean temperature of 20, the typi-

Xi=<X;+1, and(iii) well-defined transport coefficients. But a al frequenc of an oscillating bound particle is
sufficiently strong phase-space mixing, brought about by thé q Yve 9 P B

phonon-lattice interaction, is enough for all three properties_; 25/@(1920/‘7)1/2' Since the thermal velocity is
The original ding-a-ling model, as well as the modification V20(go0) ' the boungi/—zfree collision rategr may be esti-
considered here, were specially constructed with chaoti§lated as 4/20(go/0)"% and the ratiovg/vee becomes
mixing in mind. The bound particles can be made to vibrate25/(4v3). This number is almost twice that quoted above for
rapidly, relative to the collision rates of their neighboring the original model. Thus we expect mixing to be sufficient
free particles, effectively randomizing the collisions. Casatifor Fourier's law to hold also in our case. _ _
Ford, Visscher, and Vivald[1] used harmonic restoring Itis quite instructive to relate our reduced units to a typi-
forces and showed that for two-particle systems with peri€@l atomic chain witho~3X10"**m, m~4x10 * kg,

odic boundaries almodt-system behavior is found for os- and @ bound frequencys~ 10" Hz. For the unit accelera-
cillator frequenciestheir casew=3), for which the ratio of  tion one findsgy~3x 10" ms?, and the temperature of
the oscillator frequencyyg , to the bound-free collision fre- 20T* corresponds to about 500 K, a reasonable number. The
quency, vge, may be estimated tov3/m. Thus, a ratio t€mperature gradients, however, turn out to be quite large, as
equal to or exceeding this value generates enough mixing ifliscussed later. _ o
phase space to allow Fourier's law to be valid in the long- Trajgctorlgs were constrgcted by ordering all the coII_|S|on
chain limit [1,2]. This conclusion holds in spite of the fact times (including all those times when the bound particles
that trajectory plots, like the sample shown in Fig. 1, indicateg€turn to their lattice sites, requiring a change in sign of the
that repeated collisions, involving the same bound-free pairavitational forcg and choosing the smallest to update the
more than once, are relatively common. In such events théystem. In carrying out all our simulations, the momenta
bound particle oscillates, colliding two or more times with @cquired by the first and last particles, on hitting the stochas-
the moving free particle, and ultimately reversing its direc-tic boundaries akn,=0 andXcq=L=(N+1)o, were se-
tion of motion. lected from a one-sided equilibrium distributioh(p)

To avoid numerical root finding, we modify the original =(mkT)~!p|e P 2"kT, whereT is eitherT o of Teoq. Fig-
ding-a-ling model slightly and use gravitational forces forure 1 shows a typical space-time trajectory segment for a
the bound particles instead of harmonic ones. The Hamilnine-particle system. The time-averaged values of the par-
tonian is written as ticle kinetic energy and boundary heat flows were accumu-
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lated in order to obtain the temperature profile and the heat 5.9 T T T T . .
conductivity. Just as is suggested by elementary kinetic
theory, we expected to find a heat conductivity varying as the 58
square root of temperature, leading to a constant-flux profile, 57
with the temperature proportional to the 2/3 power of the Ay '
coordinate. Instead, the numerical results suggest quite a dif- 5.6
ferent power law. See Fig. 3. In the following section we
explain the reason for this interesting finding. 55
The Lyapunov exponents, which can be used to determine
the dimension of phase-space strange attradtbd need 5.4
special consideration in view of the stochastic boundaries. 53 . . . . . .
These exponents describe the tendency of satellite trajecto- Y0 001 002 003 004 005 006 0.07
ries to separate from, or converge toward, a reference trajec- N

tory. They are obtained by following the dynamics(iifini-

tesima) offset vectors in tangent space. Between consecutive FIG. 2. Maximum Lyapunov exponent; for N-particle gravi-
instantaneous events, separated by a time intervahe tat?onal ding-a-ling chains at a temperature ofT2Q \ is given in
offset-vector componentsx, 5p}, associated with the posi- Units of @o/o)*2

tion x and momentunp of a particle, evolve freely accord-

ing to the motion equations d In oV/dt=AQ/KT,

ox(7)=8x(0)+ r8p(0)/m,  Sp(7)=p(0). suggests that the components corresponding to the particle

colliding with the stochastic boundary be scaled according to
I at the end of a streaming period a bound particle crosses itgibbs’ probability
lattice site, the constant force on this particle changes sign n — AOKT
instantaneously, and the tangent-vector components for this (ox8p)*/(5x3p)~ =2,
particle immediately beforé—) and after(+) the crossing leading to the collision map
are related according to the “crossing mafl’1,13

5)(+:_5X_, 5p+:_5p—eAQlkT.
xt=6x", opT=6p —2mgsx/|p|.

We show here that this procedure produces well-behaved
The components of all the other particles are unaffected. Ihonequilibrium Lyapunov spectra. The sum of all the
the streaming is terminated by a collision between a boundlyapunov exponents vanishes for equilibrium systefs;
(b) and a free { ) particle, the collision map relating their =T_,4, and is strictly negative for steady nonequilibrium
tangent-vector components immediately befer¢ and after  heat flow for whichT o> Tqq. Since no quantity is strictly

(+) the collision becomegl1] conserved for stochastic boundaries, no vanishing Lyapunov
~ exponents are found. The resulting spectra, along with our
X{ =8%; +(p; —pp ) d7Im, Sp{ = dp, +mgdr, conductivity data, are described in the following section.
oxp = 6x, —(P; — Py ) 67/m, &py = Sp; —mMasT, . RESULTS

_ _ - We consider equilibrium systems first, for which the tem-
where o7=—m(dxX; — X, )/(p; —py) denotes the delay horaqres of the gtochastic )b/oundaries on both ends of the
time betwegn the collision of the reference and the offsefy 5 are equall,=T,=20T*. We have studied the maxi-
trajectories.g=100go>0, if the collision occurs to the left mum Lyapunov exponent for chains containing up to 2047
of the lattice site of the bound particle, age —100g,<0  particles. Our simulation results are summarized by the
otherwise. All tangent-vector components of noncollidingcrosses in Fig. 2. The smooth line constitutes a fit of a poly-
particles are unaffected. nomial in 1N to the data points,

Finally, if the streaming is terminated by a boundary col- )
lision, two cases are distinguishe@ If the boundary con- r.—|585 891|411 i) (G002
ditions areadiabatic corresponding to a fixed phase-space ! ' “\N N Yo '

volume, the respective collision map for the colliding par-
ticle with a hard wall becomeld. 1] We find that the maximum exponent is well behaved in the

long-chain limit. There is no indication of a divergencengf
oX*T=—06x", Spt=—5p~. for N—co for this one-dimensional chaotic system. This re-
sult is in accord with our earlier results for hard disks in two
The resulting Lyapunov spectra then consist of pairs of exdimensiong11], and for hard spheres in thrgg2]. We have
ponents{+\,—A} summing to zero. Two of the exponents found finite limiting exponents also for two-dimensional sys-
vanish because of energy conservation and nondivergent beems in nonequilibrium steady states with up to 32 QD4
havior in the flow direction. and 102 400 particlegl5]. On the other hand, Searlesal.
(i) In the nonequilibrium thermostated case, with a hot[16] interpret a weak, but persistent, increasexgfwith N
and a coldstochasticbhoundary, the statistical association of for a Fermi-Pasta-Ulang chain with up to 100 000 particles
heat transfeA Q with phase volumedV, as a possible sign of a logarithmic divergence.
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FIG. 3. Temperature profile for various chains with different
lengths L and boundary temperatures. The labels indicaig
—Teolg- On the abscissa normalized particle coordinatés are
used. The unit of temperature ¥ =mgyo/kg .

FIG. 4. Universal representation for various chains with differ-
ent lengthsL and boundary temperatures. The rafte=[ T(x)%?
—T52)/(TY2-T3?) is plotted as a function of the reduced particle
coordinatex/L for the profiles shown in Fig 3. Not included are the

) L data for Tpo— Teoq= (36—4)T* for which, as is outlined in the
Next we turn to the stationary nonequilibrium case. Wepin text, Fourier's heat conduction does not occur near the cold
determined the full Lyapunov spectra for systems with up to,qyndary.

63 particles. For larger systerib>127 only the two largest

exponents were obtained. The temperature for each particl;xes are then used to determine the energy flow between
was determined from its time-averaged kinetic energy. TeMpound particles the power-law relatian=23/2 results from
perature profiles for various chain lengths and temperaturg,e resulting stationary state.

gradients are shown in Fig. 3, where a normalized particle | Table | we have listed some of our nonequilibrium
coordinatex/L is used on the abscissa. The lab8lg:  steady-state results for the gravitational ding-a-ling model:
— Teoq refer to the temperatures of the one-sided momentunghe extrapolated boundary temperatufgsand T, , the heat
distributionsf(p) used for the simulation. One obseri@s  flux Q, the time-averaged kinetic and potential energies per
that for large temperature gradientshort chains the ex-  particle(K)/N and(®)/N, respectively, the thermal conduc-
trapolated wall temperature§, and T, do not agree com- ity at unit temperaturex,, the maximum Lyapunov ex-
pletely with Tho and Teoig, respectivelyi(ii) that the tem- ponenta,, and, for the shorter chains, also the sum of all
perature dependence of the conductivitfT) gives rise to Lyapunov exponent&?N,\,. From these data one infers
considerable nonlinearity in the profiles. The ansaiz hat the fluxQ varies as M. Since, according to Fig. 3, also
=o(T/T*)* together with a constant space-independente temperature gradient is proportional tol1the conduc-
heat flux Q=—«(dT/dx), leads to wo(T/T*)“dT ity « approaches a finite limiting value for large as we

= —Qdx, which, integrated along the chain, yields had expected.
At this stage a short remark about the convergence of the
T(x)e+t=Ta+i_ (a+1)Qx THe 1) simulation is in order. The simulation time must exceed the
0 Ko decay timery,em Of & perturbation due to heat diffusion on a

scale of the length of the chain. The latter may be estimated

T, is the higher temperature at=0. From elementary from mypermar L%/ (x/pC), wherep, the mass density, ar@,
kinetic-theory arguments we expected, initially, to find the specific heat, are of order unity, ane(T=20T*)
=1/2. However, the experimental profiles are consistent=2kg(go,/o)*% Most of our simulations were longer than
with &= 3/2. If the wall temperatureg, (hot) andT, (cold) 5x 10° reduced time units, sufficient for the longest chains
are determined from a fit of Eq1) to the experimental data, studied here. The Lyapunov exponents converge much faster
with «=3/2 fixed, one obtains a universal curve for all pro- than the local temperatures.
files by plotting[ T(x)%2—T52)/(TY?—~T5?) as a function of The Lyapunov spectra for nonequilibrium systems differ
x/L. See Fig. 4. The constant xo=(0.0236 only slightly from equilibrium spectra of the same chain, for
+0.0003%g(go/0) Y2 the conductivity at unit temperature Which both boundary temperatures are equal. As an example
T*, turns out to be independent &f for chains withN ~ we show in Fig 5 a spectrum for a 63-particle chain with
=15. This result clearly shows that Fourier's law of heatboundary temperature®,=28 and Tcoq=12 in units of
conduction is obeyed for long gravitational ding-a-ling T*. Although not noticeable on the scale of this figure, the
chains, thus confirming analogous conclusions for the origisum of all exponents is negative. From the Kaplan-Yorke
nal ding-a-ling mode[2] or related model$3,4]. formula we deduce that the information dimens@nof the

We were able to understand this dependence by solving @nderlying strange attractor in phase space is 125.9954
simple Master-equation kinetic-theory model for the tem-*+0.0001. This corresponds to a reduction in dimensionality
perature profile. The model assumes that the bound particlesD =0.0046- 0.0001. We observe from Table | and from
are characterized by temperatures while the free particleBig 6 thatAD varies, for givenT,— T g, as the heat flux
have momentum and energy fluxes determined by the tenf2 and, consequently, is proportional toN1/But also the
perature of their last collision with a bound particle. If thesedriving temperature gradient decreases witl if/the length
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TABLE I. Simulation results for nonequilibrium chains Nf particles and length =(N+1)o. The left
and right stochastic-boundary temperatufiggs, and T4, and the extrapolated temperatursandT, , are
given in units ofT* =mg,o/kg . xo, the conductivity at unit temperature, is given in unitskgfgg /o)
Q is the heat fluxunits:mgd?0/?), \; the maximum Lyapunov exponeftnits: (go /o) Y?], and=2, is the
sum over all exponentsAD=2N-D, is the dimensionality reduction, whei®, is the Kaplan-Yorke
(information dimension{K)/N and{®)/N are the time-averaged kinetic and potential energies per particle,
respectively, given in units ahgyo.

N Thot Teod To  Te Ko Q Ay =2 AD  (K)/N (®)/N

7 22 18 219 18.1 0.0234 0.972 4.782—-0.0098 0.00205 10.01 8.23
15 22 18 219 18.0 0.0233 0.503 5.334-0.0051 0.00095 10.03 8.96
31 22 18 219 18.0 0.0233 0.253 5.585-0.0026 0.00046 10.04 9.30
63 22 18 219 180 0.0237 0.130 5.709 10.04 9.46

127 22 18 219 180 0.0232 0.065 5.775 10.02 9.52

7 24 16 235 159 0.0232 1.932 4.781-0.040 0.0084 10.04 8.25
15 24 16 23.7 159 0.0234 1.009 5.336-0.021 0.0040 10.10 9.02
31 24 16 239 16.0 0.0233 0516 5.590-0.011 0.0020 10.18 9.41
63 24 16 240 16.0 0.0235 0.265 5.718-0.006 0.0010 10.21 9.59

127 24 16 239 16.0 0.0236 0.131 5.784 10.17 9.63
255 24 16 240 16.0 0.0236 0.067 5.829 10.22 9.71

15 28 12 27.3 110 0.0235 2.054 5.344-0.098 0.0183 10.46 9.29
31 28 12 276 114 0.0238 1.063 5.605-0.051 0.0090 10.61 9.74
63 28 12 279 11.7 0.0238 0.544 5.741-0.026 0.0046 10.72 9.98
127 28 12 28.0 118 0.0239 0.274 5.817-0.014 0.0023 10.76 10.10

255 28 12 28.1 11.7 0.0230 0.134 5.867 10.79 10.16
15 36 4 338 0 0.025 4270 5.36 —0.948 0.176 11.80 10.30
31 36 4 351 0 0.024 2322 5.66 —0.516 0.091 12.40 11.10
63 36 4 359 0 0.025 1.206 5.81 —0.277 0.047 12.65 11.44
127 36 4 36.0 0 0.025 0.606 5.90 —0.136 0.023 12.74 11.58
255 36 4 363 0 0.025 0.308 5.96 12.88 11.73

of the chain increases. For a constant heat flux we dedudsehavior. The reason is that the temperature gradients cannot
from Fig. 6 that for not too large temperature gradients thebe increased arbitrarily to allow for largét, and that the
dimensionality reductiol\D is proportional toN reminis-  temperateTl .,y becomes so low in the process that the ratio
cent of the extensivity found for dynamically thermostatedvg/vge is too small to support Fourier heat conduction near
homogeneous nonequilibrium systef§]. Here we are lim-  the cold boundary. This happens already for the largest gra-
ited to rather short chainsmallN) to observe this extensive dients studied here for whichy,,=36T* and T, q=4T* to

L
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FIG. 5. Lyapunov spectrum for 63 ding-a-ling particles and for  FIG. 6. Dimensionality reductiodD as a function of the heat
the boundary temperaturf§,,;=28 andT.,q=12 in our reduced flux Q for the boundary-temperature differencég,— T.qq indi-
units T* =mgyo/kg. The sum over all exponents is negative as cated by the label§n units of T* =mg,o/kg). The straight lines
indicated in Table I. The Lyapunov exponents are given in units ofare a fit of a linear relatiod D =aQ to the data points. Along each
(go/0)*2 line N varies parametrically.
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offset vectors in tangent space. An analogous behavior has
been found in two dimensions for various dynamical systems
[15,17,18 without stochastic boundaries, and has been also
predicted from theoretical argumerts9]. The patterns of
6;, for largerl, may be much more complicated and less
localized, and may involve various clusters of particles. In
contrast to previous studies with two-dimensional dynamical
systemg[18] we do not find a coherent modelike structure
for | belonging to the smallest positive exponents. This find-
ing is partially due to the stochastic boundaries, but is mainly
due to the lack of any long-wave acoustic modes.

IV. CONCLUSIONS

FIG. 7. Mean squared componerﬂé for a gravitational ding- We have confirmed that the ding-a-ling model has a well-
a-ling chain of 63 particles coupled to stochastic boundaries wittbehaved heat conductivity. Likewise, it appears that the
Thot=28T*, and T.qq=12T*. Only Lyapunov indices £I1<63  Lyapunov spectrum has a convergent large-system limit. We
associated with positive exponents are considered. have developed an approach to the estimation of Lyapunov

spectra for systems with stochastic boundaries, and used it to
which the topmost line in Fig. 6 refers: For fixé@d, AD  estimate the dimensionality loss of the strange attractor for a
starts to increase much faster than proportionaNtoonce  conducting ding-a-ling chain. The loss is limited in one di-
Tcolg drops below 10*. We also note that for a given length mension, where only two particles constitute the entire
of the chain the reduction in dimensionality increases withboundary. It is logical to expect that this same method, in
the square of the temperature gradient, as expected. From amo and three dimensions, would lead to a phase-space di-
atomistic point of view the temperature gradients appearingnensionality reduction of ordeX(®~/® in D physical di-
here are extremely large. mensions for giverm,,— Teoq- Although this latter depen-

In one dimension, the flow of heat, for a fixed temperaturegence would seem inconsistent with an extensive
difference, is inversely proportional to system size. In twodependenceAD =N, as is suggested by irreversible thermo-
dimensions, for a square system, the heat flow is unchangeglynamics, where the entropy production is proportional to
while in three it increases. Thus the one-dimensional system@e total volume of the system, any system that is both driven
become more and more like equilibrium systems as the sizgnd thermostated at the boundary will have a dissipation rate
is increased. The decreasing dissipation, with increasing sygroportional to a transport coefficient andltB~2. For hard
tem size, means that the reduction in phase-space dimensiogarticles the transport coefficient and the boundary driving
ality is largest for small systems. can both increase, proportional kg giving for the overall

In previous work 15,17,18 we have introduced so-called jssipationL®**. On the other hand, both the Lyapunov
“squared particle components’; | defined as the projec- spectra and the boundary temperature increase, sl L2,

tions of the offset vectors;={ox;,0p1,...,0%y,8Pn}1, @S- respectively, so that the dimensionality loss should decrease
sociated with the Lyapunov exponent, onto the subspaces gs the surface/volume ratio.

spanned by the phase variables of an individual particle
8% ={oxZ+ 5p?}, . Since the offset vectors are taken as unit
vectors in tangent space, the squared components obey the

sum rule={L,67,=1 for eachl. They indicate to what ex-  We thank Christoph Dellago and Dimitri Kusnezov for
tent a particular molecule contributes to the phase-space their encouragement and suggestions. Work at the Lawrence
expansior(contraction, as is quantified by, , at any instant  Livermore National Laboratory was performed under the
of time. In Fig. 7 we showaﬁ, for a stationary nonequilib- auspices of the University of California, through Department
rium chain of 63 particles, %i<63, and for all associated of Energy Contract No. W-7405-eng-48, and was further
with positive exponents, €i<63. Forl =1 referring to the supported by grants from the Advanced Scientific Comput-
maximum exponent always a very localized active zone igng Initiative, the Accelerated Strategic Computing Initiative,
observed to which only very few particles, sometimes onlyand the Department of Mechanical Engineering at LLNL.
one or two, belong at any instant of time. It is a consequenceélarald Posch gratefully acknowledges support at the Univer-
of the competition between various colliding particles and asity of Vienna, from the Fonds zur Fderung der wissen-
selection process introduced by the renormalization of thechaftlichen Forschung Grant No. P11428-PHY.
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