
PHYSICAL REVIEW E OCTOBER 1998VOLUME 58, NUMBER 4
Heat conduction in one-dimensional chains and nonequilibrium Lyapunov spectrum
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We define and study the heat conductivityk and the Lyapunov spectrum for a modified ‘‘ding-a-ling’’ chain
undergoing steady heat flow. Free and bound particles alternate along a chain. In the present work, we use a
linear gravitational potential to bind all the even-numbered particles to their lattice sites. The chain is bounded
by two stochastic heat reservoirs, one hot and one cold. The Fourier conductivity of the chain decreases
smoothly to a finite large-system limit. Special treatment of satellite collisions with the stochastic boundaries
is required to obtain Lyapunov spectra. The summed spectra are negative, and correspond to a relatively small
contraction in phase space, with the formation of a multifractal strange attractor. The largest of the Lyapunov
exponents for the ding-a-ling chain appears to converge to a limiting value with increasing chain length, so that
the large-system Lyapunov spectrum has a finite limit.@S1063-651X~98!11510-6#

PACS number~s!: 05.70.Ce, 05.20.2y, 31.15.Qg, 47.70.2n
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I. INTRODUCTION

Casati, Ford, Vivaldi, and Visscher introduced the
‘‘ding-a-ling’’ model in 1984 @1#. This one-dimensiona
model is, arguably, the simplest mechanical model to exh
Fourier heat flow, with a well-defined thermal conductivit
k52Q/(dT/dx), in the long-chain-length limit@2#. Here,
Q is the heat flux, anddT/dx is the temperature gradien
along the chain. In the original version of this model@1,2# all
even-numbered particles were bound to their lattice s
with harmonic springs, while the odd-numbered partic
were able to move freely, between their adjacent bound
ticles, transporting heat. The system was bounded by
stochastic heat reservoirs, which served to drive the ch
into a nonequilibrium steady state. In a variant of this mod
introduced by Prosen and Robnik@3#, all interior particles
are harmonically bound to lattice sites. The first and l
particles move freely, coupling the chain of colliding osc
lators to the terminating stochastic heat baths.

Recently, Hu, Li, and Zhao@4# considered one-
dimensional Frenkel-Kontorova chains, consisting of p
ticles connected by harmonic springs and, in addition, s
jected to an external sinusoidal potential. They showed
this external potential~the ‘‘lattice’’ ! assumes the role of th
bound lattice particles in the ding-a-ling model and tha
strong phonon-lattice interaction, inducing phonon scatter
on the lattice, is the key for the existence of a finite h
conductivity in the long-chain limit. Anharmonicity in th
potential is not sufficient and can lead to a diverging cond
tivity as exemplified by the Fermi-Pasta-Ulamb model @5#.

In studies of nonequilibrium steady states it is presen
unclear to what extent the phase-space distribution func
depends on the choice of boundary conditions@6#. It is quite
reasonable, as we detail later, to expect boundary effect
order N21/D in D dimensions, whereN is the number of
particles. Such boundary effects can be sensitive to the
tails of their implementation. Usingdeterministic feedbackto
impose energetic or thermal constraints on boundary deg
PRE 581063-651X/98/58~4!/4344~7!/$15.00
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of freedom, it has been established@9#, even rigorously@10#,
that the phase-space distribution function can occupy a m
tifractal attractor, with an information dimension reduc
well below that of the unconstrained equilibrium distrib
tion. For stochastic boundaries, however, it has been state
that the distribution is absolutely continuous@6,7#, without
any fractal character. There are no numerical results confi
ing this idea, and the present work developed, in part, to
it. In a recent study of the phase space structure of a dri
Lorentz gas with a partially stochastic boundary we ha
found numerical evidence suggesting that multifractal attr
tors may coexist with stochastic boundaries@8#.

The noise introduced by stochastic boundaries is a c
plicating feature for any comparison with deterministic the
mostatted boundaries. We are particularly interested in
chaotic properties of nonequilibrium steady states. It is
interest to determine, first of all, whether or not a Lyapun
spectrum exists for a system with stochastic boundaries.
have developed an approximate method for estimating su
spectrum and apply it here to a slightly modified version
the one-dimensional ding-a-ling model. We find that the
sulting approximate spectra resemble those from other n
equilibrium steady-state simulations@6,9–12#, with a nega-
tive overall sum corresponding to the collapse onto a pha
space strange attractor. However, the dimensionality los
quite small, of order 1/N for a fixed temperature differenc
between the stochastic boundaries of the chain, due to
one-dimensional nature of the model.

The convergence of the Lyapunov spectrum for incre
ing system size in equilibrium is another interesting questi
In two dimensions this convergence turned out to be delic
@6# apparently depending on the details of the boundary c
ditions. There is numerical evidence for systems of h
disks in two dimensions@11#, and for hard spheres in thre
@12#, that the maximum exponent exists. Our results for
one-dimensional ding-a-ling model indicate that the larg
Lyapunov exponent converges to a definite limit with i
creasing system size, as might be expected for the Eins
4344 © 1998 The American Physical Society
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PRE 58 4345HEAT CONDUCTION IN ONE-DIMENSIONAL CHAINS . . .
like localized-mode nature of the motion. In contrast, t
Fermi-Pasta-Ulamb model, which is characterized by a d
verging heat conductivity, seems to exhibit a logarithmic
vergence of the maximum Lyapunov exponent with ch
length @16# emphasizing the nonlocal character of its d
namical processes.

For the ding-a-ling model there is no special reason to
a harmonic binding potential for the particles bound to
lattice site. Here we modify the original model of Cas
et al. by using a gravitational potential,f5mgux2x0u,
rather than a harmonic one, for the even-numbered bo
particles. Here,x stands for a bound-particle coordinate, a
x0 denotes the respective lattice site. The choice of a~one-
dimensional! gravitational potential has the advantage th
the times at which bound-free collisions occur can be fou
analytically, by solving quadratic equations. The simplifi
model has the same qualitative properties as the original
but offers the advantage of superior computational e
ciency. In Sec. II we introduce our model and describe
exact algorithm for the computation of Lyapunov spectra
tangent space. Particular emphasis is given to the pro
treatment of stochastic boundaries on both ends of the ch
This allows the computation of full Lyapunov spectra f
chains supporting stationary heat flow described by Fouri
law ~in the long-chain limit!. Our simulation results, both fo
equilibrium and stationary nonequilibrium chains, are p
sented in Sec. III. We conclude, in Sec. IV, with a few r
marks.

II. MODIFIED DING-A-LING MODEL FOR HEAT
CONDUCTION

At first glance it seems odd that a one-dimensional mo
could lead to~i! chaos,~ii ! ergodicity, within the constrain
xi<xi 11 , and~iii ! well-defined transport coefficients. But
sufficiently strong phase-space mixing, brought about by
phonon-lattice interaction, is enough for all three propert
The original ding-a-ling model, as well as the modificati
considered here, were specially constructed with cha
mixing in mind. The bound particles can be made to vibr
rapidly, relative to the collision rates of their neighborin
free particles, effectively randomizing the collisions. Cas
Ford, Visscher, and Vivaldi@1# used harmonic restoring
forces and showed that for two-particle systems with p
odic boundaries almost-K-system behavior is found for os
cillator frequencies~their casev53), for which the ratio of
the oscillator frequency,nB , to the bound-free collision fre
quency, nBF , may be estimated to 3)/p. Thus, a ratio
equal to or exceeding this value generates enough mixin
phase space to allow Fourier’s law to be valid in the lon
chain limit @1,2#. This conclusion holds in spite of the fac
that trajectory plots, like the sample shown in Fig. 1, indic
that repeated collisions, involving the same bound-free p
more than once, are relatively common. In such events
bound particle oscillates, colliding two or more times wi
the moving free particle, and ultimately reversing its dire
tion of motion.

To avoid numerical root finding, we modify the origina
ding-a-ling model slightly and use gravitational forces f
the bound particles instead of harmonic ones. The Ham
tonian is written as
-
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where the gravitational accelerationgk50 for the odd-
numbered free particles, andgk5100g0 for the even-
numbered bound particles.xk and pk are the spatial coordi-
nate and the momentum, respectively, of particlek. In the
following we use reduced units for which the particle ma
m, the mean interparticle spacings, and the gravitational
constantg0 are all unity. Our unit of time is (s/g0)1/2, and
the unit of energy ismsg0 . Note that the gravitational field
is 100 in our reduced units. Since also Boltzmann’s cons
kB is taken as unity, all temperatures are measured in unit
T* [mg0s/kB . With a mean temperature of 20T* , the typi-
cal frequencynB of an oscillating bound particle isnB

525/A60(g0 /s)1/2. Since the thermal velocity is
A20(g0s)1/2, the bound-free collision ratenBF may be esti-
mated as 4/A20(g0 /s)1/2, and the rationB /nBF becomes
25/(4)). This number is almost twice that quoted above
the original model. Thus we expect mixing to be sufficie
for Fourier’s law to hold also in our case.

It is quite instructive to relate our reduced units to a ty
cal atomic chain withs;3310210 m, m;4310226 kg,
and a bound frequencynB;1012 Hz. For the unit accelera
tion one findsg0;331013 ms22, and the temperature o
20T* corresponds to about 500 K, a reasonable number.
temperature gradients, however, turn out to be quite large
discussed later.

Trajectories were constructed by ordering all the collisi
times ~including all those times when the bound particl
return to their lattice sites, requiring a change in sign of
gravitational force! and choosing the smallest to update t
system. In carrying out all our simulations, the momen
acquired by the first and last particles, on hitting the stoch
tic boundaries atxhot50 andxcold[L5(N11)s, were se-
lected from a one-sided equilibrium distributionf (p)
5(mkT)21upue2p2/2mkT, whereT is eitherThot or Tcold. Fig-
ure 1 shows a typical space-time trajectory segment fo
nine-particle system. The time-averaged values of the p
ticle kinetic energy and boundary heat flows were accum

FIG. 1. Typical space-time trajectories for a gravitational din
a-ling model with 9 particles, where the time is plotted along t
horizontal axis. The boundary temperatures are 10 at the top, an
at the bottom, in units ofT* 5mg0s/kB . The gravitational field
strength is 100g0 .
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4346 PRE 58H. A. POSCH AND WM. G. HOOVER
lated in order to obtain the temperature profile and the h
conductivity. Just as is suggested by elementary kin
theory, we expected to find a heat conductivity varying as
square root of temperature, leading to a constant-flux pro
with the temperature proportional to the 2/3 power of t
coordinate. Instead, the numerical results suggest quite a
ferent power law. See Fig. 3. In the following section w
explain the reason for this interesting finding.

The Lyapunov exponents, which can be used to determ
the dimension of phase-space strange attractors@10#, need
special consideration in view of the stochastic boundar
These exponents describe the tendency of satellite traje
ries to separate from, or converge toward, a reference tra
tory. They are obtained by following the dynamics of~infini-
tesimal! offset vectors in tangent space. Between consecu
instantaneous events, separated by a time intervalt, the
offset-vector components$dx,dp%, associated with the posi
tion x and momentump of a particle, evolve freely accord
ing to the motion equations

dx~t!5dx~0!1tdp~0!/m, dp~t!5dp~0!.

If at the end of a streaming period a bound particle crosse
lattice site, the constant force on this particle changes s
instantaneously, and the tangent-vector components for
particle immediately before~2! and after~1! the crossing
are related according to the ‘‘crossing map’’@11,13#

dx15dx2, dp15dp222mgdx2/upu.

The components of all the other particles are unaffected
the streaming is terminated by a collision between a bo
(b) and a free (f ) particle, the collision map relating the
tangent-vector components immediately before~2! and after
~1! the collision becomes@11#

dxf
15dxf

21~pf
22pb

2!dt/m, dpf
15dpb

21mg̃dt,

dxb
15dxb

22~pf
22pb

2!dt/m, dpb
15dpf

22mg̃dt,

where dt52m(dxf
22dxb

2)/(pf
22pb

2) denotes the delay
time between the collision of the reference and the off
trajectories.g̃5100g0.0, if the collision occurs to the lef
of the lattice site of the bound particle, andg̃52100g0,0
otherwise. All tangent-vector components of noncollidi
particles are unaffected.

Finally, if the streaming is terminated by a boundary c
lision, two cases are distinguished:~i! If the boundary con-
ditions areadiabatic, corresponding to a fixed phase-spa
volume, the respective collision map for the colliding pa
ticle with a hard wall becomes@11#

dx152dx2, dp152dp2.

The resulting Lyapunov spectra then consist of pairs of
ponents,$1l,2l% summing to zero. Two of the exponen
vanish because of energy conservation and nondivergen
havior in the flow direction.

~ii ! In the nonequilibrium thermostated case, with a h
and a coldstochasticboundary, the statistical association
heat transferDQ with phase volumedV,
at
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d ln dV/dt5DQ/kT,

suggests that the components corresponding to the par
colliding with the stochastic boundary be scaled according
Gibbs’ probability

~dxdp!1/~dxdp!25eDQ/kT,

leading to the collision map

dx152dx2, dp152dp2eDQ/kT.

We show here that this procedure produces well-beha
nonequilibrium Lyapunov spectra. The sum of all th
Lyapunov exponents vanishes for equilibrium systems,Thot
5Tcold, and is strictly negative for steady nonequilibriu
heat flow for whichThot.Tcold. Since no quantity is strictly
conserved for stochastic boundaries, no vanishing Lyapu
exponents are found. The resulting spectra, along with
conductivity data, are described in the following section.

III. RESULTS

We consider equilibrium systems first, for which the tem
peratures of the stochastic boundaries on both ends of
chain are equal,T05TL520T* . We have studied the maxi
mum Lyapunov exponent for chains containing up to 20
particles. Our simulation results are summarized by
crosses in Fig. 2. The smooth line constitutes a fit of a po
nomial in 1/N to the data points,

l15F5.8528.9S 1

ND1119S 1

ND 2G~g0 /s!1/2.

We find that the maximum exponent is well behaved in
long-chain limit. There is no indication of a divergence ofl1
for N→` for this one-dimensional chaotic system. This r
sult is in accord with our earlier results for hard disks in tw
dimensions@11#, and for hard spheres in three@12#. We have
found finite limiting exponents also for two-dimensional sy
tems in nonequilibrium steady states with up to 32 000@14#
and 102 400 particles@15#. On the other hand, Searleset al.
@16# interpret a weak, but persistent, increase ofl1 with N
for a Fermi-Pasta-Ulamb chain with up to 100 000 particle
as a possible sign of a logarithmic divergence.

FIG. 2. Maximum Lyapunov exponentl1 for N-particle gravi-
tational ding-a-ling chains at a temperature of 20T* . l1 is given in
units of (g0 /s)1/2.
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Next we turn to the stationary nonequilibrium case. W
determined the full Lyapunov spectra for systems with up
63 particles. For larger systemsN.127 only the two larges
exponents were obtained. The temperature for each par
was determined from its time-averaged kinetic energy. Te
perature profiles for various chain lengths and tempera
gradients are shown in Fig. 3, where a normalized part
coordinatex/L is used on the abscissa. The labelsThot
2Tcold refer to the temperatures of the one-sided momen
distributions f (p) used for the simulation. One observes~i!
that for large temperature gradients~short chains! the ex-
trapolated wall temperaturesT0 and TL do not agree com-
pletely with Thot and Tcold, respectively;~ii ! that the tem-
perature dependence of the conductivityk(T) gives rise to
considerable nonlinearity in the profiles. The ansatzk
5k0(T/T* )a, together with a constant space-independ
heat flux Q52k(dT/dx), leads to k0(T/T* )adT
52Qdx, which, integrated along the chain, yields

T~x!a115T0
a112

~a11!Qx

k0
T* a. ~1!

T0 is the higher temperature atx50. From elementary
kinetic-theory arguments we expected, initially, to finda
51/2. However, the experimental profiles are consist
with a53/2. If the wall temperaturesT0 ~hot! andTL ~cold!
are determined from a fit of Eq.~1! to the experimental data
with a53/2 fixed, one obtains a universal curve for all pr
files by plotting@T(x)5/22T0

5/2#/(TL
5/22T0

5/2) as a function of
x/L. See Fig. 4. The constant k05(0.0236
60.0003)kB(g0 /s)1/2, the conductivity at unit temperatur
T* , turns out to be independent ofN for chains with N
>15. This result clearly shows that Fourier’s law of he
conduction is obeyed for long gravitational ding-a-lin
chains, thus confirming analogous conclusions for the or
nal ding-a-ling model@2# or related models@3,4#.

We were able to understand this dependence by solvi
simple Master-equation kinetic-theory model for the te
perature profile. The model assumes that the bound part
are characterized by temperatures while the free parti
have momentum and energy fluxes determined by the t
perature of their last collision with a bound particle. If the

FIG. 3. Temperature profile for various chains with differe
lengths L and boundary temperatures. The labels indicateThot

2Tcold. On the abscissa normalized particle coordinatesx/L are
used. The unit of temperature isT* 5mg0s/kB .
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fluxes are then used to determine the energy flow betw
bound particles the power-law relationa53/2 results from
the resulting stationary state.

In Table I we have listed some of our nonequilibriu
steady-state results for the gravitational ding-a-ling mod
the extrapolated boundary temperaturesT0 andTL , the heat
flux Q, the time-averaged kinetic and potential energies
particle^K&/N and^F&/N, respectively, the thermal conduc
tivity at unit temperature,k0 , the maximum Lyapunov ex-
ponentl1 , and, for the shorter chains, also the sum of
Lyapunov exponents( l 51

2N l l . From these data one infer
that the fluxQ varies as 1/N. Since, according to Fig. 3, als
the temperature gradient is proportional to 1/N, the conduc-
tivity k approaches a finite limiting value for largeN, as we
had expected.

At this stage a short remark about the convergence of
simulation is in order. The simulation time must exceed
decay timet therm of a perturbation due to heat diffusion on
scale of the length of the chain. The latter may be estima
from t thermal;L2/(k/rC), wherer, the mass density, andC,
the specific heat, are of order unity, andk(T520T* )
.2kB(g0 /s)1/2. Most of our simulations were longer tha
53106 reduced time units, sufficient for the longest chai
studied here. The Lyapunov exponents converge much fa
than the local temperatures.

The Lyapunov spectra for nonequilibrium systems dif
only slightly from equilibrium spectra of the same chain, f
which both boundary temperatures are equal. As an exam
we show in Fig. 5 a spectrum for a 63-particle chain wit
boundary temperaturesThot528 and Tcold512 in units of
T* . Although not noticeable on the scale of this figure, t
sum of all exponents is negative. From the Kaplan-Yor
formula we deduce that the information dimensionD1 of the
underlying strange attractor in phase space is 125.9
60.0001. This corresponds to a reduction in dimensiona
DD50.004660.0001. We observe from Table I and fro
Fig 6 thatDD varies, for givenThot2Tcold, as the heat flux
Q and, consequently, is proportional to 1/N. But also the
driving temperature gradient decreases with 1/N if the length

FIG. 4. Universal representation for various chains with diffe
ent lengthsL and boundary temperatures. The ratioR[@T(x)5/2

2T0
5/2#/(TL

5/22T0
5/2) is plotted as a function of the reduced partic

coordinatex/L for the profiles shown in Fig 3. Not included are th
data for Thot2Tcold5(3624)T* for which, as is outlined in the
main text, Fourier’s heat conduction does not occur near the c
boundary.
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TABLE I. Simulation results for nonequilibrium chains ofN particles and lengthL5(N11)s. The left
and right stochastic-boundary temperatures,Thot andTcold, and the extrapolated temperatures,T0 andTL , are
given in units ofT* [mg0s/kB . k0 , the conductivity at unit temperature, is given in units ofkB(g0 /s)1/2.
Q is the heat flux~units:mg0

3/2s1/2), l1 the maximum Lyapunov exponent@units: (g0 /s)1/2#, and( l 51
2N is the

sum over all exponents.DD52N2D1 is the dimensionality reduction, whereD1 is the Kaplan-Yorke
~information! dimension.̂ K&/N and^F&/N are the time-averaged kinetic and potential energies per part
respectively, given in units ofmg0s.

N Thot Tcold T0 TL k0 Q l1 ( l 51
2N DD ^K&/N ^F&/N

7 22 18 21.9 18.1 0.0234 0.972 4.78220.0098 0.00205 10.01 8.23
15 22 18 21.9 18.0 0.0233 0.503 5.33420.0051 0.00095 10.03 8.96
31 22 18 21.9 18.0 0.0233 0.253 5.58520.0026 0.00046 10.04 9.30
63 22 18 21.9 18.0 0.0237 0.130 5.709 10.04 9.4

127 22 18 21.9 18.0 0.0232 0.065 5.775 10.02 9.5

7 24 16 23.5 15.9 0.0232 1.932 4.78120.040 0.0084 10.04 8.25
15 24 16 23.7 15.9 0.0234 1.009 5.33620.021 0.0040 10.10 9.02
31 24 16 23.9 16.0 0.0233 0.516 5.59020.011 0.0020 10.18 9.41
63 24 16 24.0 16.0 0.0235 0.265 5.71820.006 0.0010 10.21 9.59

127 24 16 23.9 16.0 0.0236 0.131 5.784 10.17 9.6
255 24 16 24.0 16.0 0.0236 0.067 5.829 10.22 9.7

15 28 12 27.3 11.0 0.0235 2.054 5.34420.098 0.0183 10.46 9.29
31 28 12 27.6 11.4 0.0238 1.063 5.60520.051 0.0090 10.61 9.74
63 28 12 27.9 11.7 0.0238 0.544 5.74120.026 0.0046 10.72 9.98

127 28 12 28.0 11.8 0.0239 0.274 5.81720.014 0.0023 10.76 10.10
255 28 12 28.1 11.7 0.0230 0.134 5.867 10.79 10.1

15 36 4 33.8 0 0.025 4.270 5.36 20.948 0.176 11.80 10.30
31 36 4 35.1 0 0.024 2.322 5.66 20.516 0.091 12.40 11.10
63 36 4 35.9 0 0.025 1.206 5.81 20.277 0.047 12.65 11.44

127 36 4 36.0 0 0.025 0.606 5.90 20.136 0.023 12.74 11.58
255 36 4 36.3 0 0.025 0.308 5.96 12.88 11.7
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of the chain increases. For a constant heat flux we ded
from Fig. 6 that for not too large temperature gradients
dimensionality reductionDD is proportional toN reminis-
cent of the extensivity found for dynamically thermostat
homogeneous nonequilibrium systems@10#. Here we are lim-
ited to rather short chains~smallN) to observe this extensiv

FIG. 5. Lyapunov spectrum for 63 ding-a-ling particles and
the boundary temperaturesThot528 andTcold512 in our reduced
units T* 5mg0s/kB . The sum over all exponents is negative
indicated in Table I. The Lyapunov exponents are given in units
(g0 /s)1/2.
ce
e
behavior. The reason is that the temperature gradients ca
be increased arbitrarily to allow for largerN, and that the
temperateTcold becomes so low in the process that the ra
nB /nBF is too small to support Fourier heat conduction ne
the cold boundary. This happens already for the largest
dients studied here for whichThot536T* andTcold54T* to

r

f

FIG. 6. Dimensionality reductionDD as a function of the hea
flux Q for the boundary-temperature differencesThot2Tcold indi-
cated by the labels~in units of T* 5mg0s/kB). The straight lines
are a fit of a linear relationDD5aQ to the data points. Along each
line N varies parametrically.
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which the topmost line in Fig. 6 refers: For fixedQ, DD
starts to increase much faster than proportional toN, once
Tcold drops below 10T* . We also note that for a given lengt
of the chain the reduction in dimensionality increases w
the square of the temperature gradient, as expected. Fro
atomistic point of view the temperature gradients appea
here are extremely large.

In one dimension, the flow of heat, for a fixed temperat
difference, is inversely proportional to system size. In t
dimensions, for a square system, the heat flow is unchan
while in three it increases. Thus the one-dimensional syst
become more and more like equilibrium systems as the
is increased. The decreasing dissipation, with increasing
tem size, means that the reduction in phase-space dimen
ality is largest for small systems.

In previous work@15,17,18# we have introduced so-calle
‘‘squared particle components’’d i ,l defined as the projec
tions of the offset vectorsd l5$dx1 ,dp1 ,...,dxN ,dpN% l , as-
sociated with the Lyapunov exponentl l , onto the subspace
spanned by the phase variables of an individual particlei :
d i ,l

2 [$dxi
21dpi

2% l . Since the offset vectors are taken as u
vectors in tangent space, the squared components obe
sum rule( i 51

N d i ,l
2 51 for eachl . They indicate to what ex-

tent a particular moleculei contributes to the phase-spa
expansion~contraction!, as is quantified byl l , at any instant
of time. In Fig. 7 we showd i ,l

2 for a stationary nonequilib-
rium chain of 63 particles, 1< i<63, and for alll associated
with positive exponents, 1< i<63. Forl 51 referring to the
maximum exponent always a very localized active zone
observed to which only very few particles, sometimes o
one or two, belong at any instant of time. It is a conseque
of the competition between various colliding particles an
selection process introduced by the renormalization of

FIG. 7. Mean squared componentsd i ,l
2 for a gravitational ding-

a-ling chain of 63 particles coupled to stochastic boundaries w
Thot528T* , and Tcold512T* . Only Lyapunov indices 1< l<63
associated with positive exponents are considered.
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offset vectors in tangent space. An analogous behavior
been found in two dimensions for various dynamical syste
@15,17,18# without stochastic boundaries, and has been a
predicted from theoretical arguments@19#. The patterns of
d i ,l for larger l , may be much more complicated and le
localized, and may involve various clusters of particles.
contrast to previous studies with two-dimensional dynami
systems@18# we do not find a coherent modelike structu
for l belonging to the smallest positive exponents. This fin
ing is partially due to the stochastic boundaries, but is mai
due to the lack of any long-wave acoustic modes.

IV. CONCLUSIONS

We have confirmed that the ding-a-ling model has a w
behaved heat conductivity. Likewise, it appears that
Lyapunov spectrum has a convergent large-system limit.
have developed an approach to the estimation of Lyapu
spectra for systems with stochastic boundaries, and used
estimate the dimensionality loss of the strange attractor f
conducting ding-a-ling chain. The loss is limited in one d
mension, where only two particles constitute the ent
boundary. It is logical to expect that this same method,
two and three dimensions, would lead to a phase-space
mensionality reduction of orderN(D21)/D in D physical di-
mensions for givenThot2Tcold. Although this latter depen-
dence would seem inconsistent with an extens
dependence,DD}N, as is suggested by irreversible therm
dynamics, where the entropy production is proportional
the total volume of the system, any system that is both dri
and thermostated at the boundary will have a dissipation
proportional to a transport coefficient and toLD22. For hard
particles the transport coefficient and the boundary driv
can both increase, proportional toL, giving for the overall
dissipationLD11. On the other hand, both the Lyapuno
spectra and the boundary temperature increase, asL andL2,
respectively, so that the dimensionality loss should decre
as the surface/volume ratio.
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